Recall: Solve for y.

1.
$$\frac{3y}{3} = \frac{6x + 5}{3}$$
 $y = \frac{6x + 5}{3}$
 $y = \frac{6x + 5}{3}$

2.
$$7x - \sqrt{y+5} = 11-7x$$

$$-7x$$

$$-7x$$

$$-7x$$

$$-7x$$

$$-7x$$

$$-7x$$

$$-7x$$

$$-1$$

$$-1$$

$$(7x-11)^{2}$$

$$(7x-11)(7x-11)$$

$$-5$$

$$-5$$

$$-5$$

$$-5$$

$$-5$$

3.
$$2x + \frac{3}{4}y = -12 - 2x$$

 $-\frac{2}{3}x + \frac{3}{4}y = (-\frac{2}{2}x - \frac{12}{3}) + \frac{4}{3}x$
 $y = \frac{-8}{3}x - \frac{16}{4}x$
4. $2(y - 1)^4 + \frac{5}{2} = x - 5$
 $2(y - 1)^4 = \frac{x - 5}{2} + \frac{4}{4}x$
 $y - 1 = \frac{x - 5}{2} + \frac{4}{4}x$
 $y - 1 = \frac{x - 5}{2} + \frac{4}{4}x$
 $y - 1 = \frac{x - 5}{2} + \frac{4}{4}x$

Inverse Functions

EQ: How do you find and verify the inverse of a given function?

Standards:

Build new functions from existing functions

MCC9-12.F.BF.4a Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.

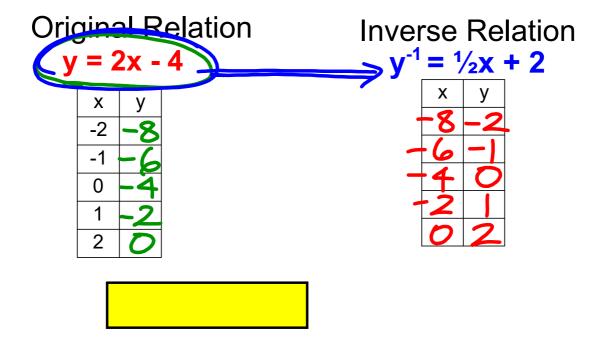
MCC9-12.F.BF.4b Verify by composition that one function is the inverse of another.

MCC9-12.F.BF.4c Read values of an inverse function from a graph or table, given that the function has an inverse.

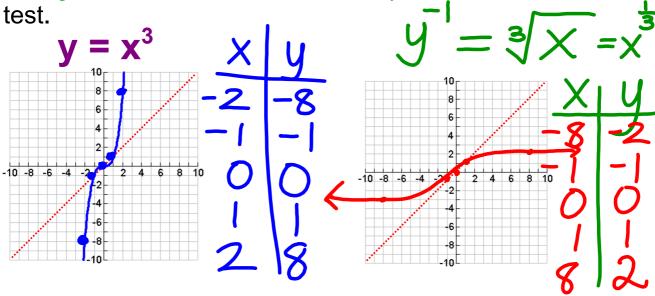
A relation is a mapping of input values (domain) onto output values(range).

An <u>inverse</u> relation maps the output values back to their original input values.

D:
$$\{x \mid x \geq 3\}$$
 D: $3 \leq x < \infty$ [3, ∞]


R: $\{y \mid y \leq 7\}$ R: $-\infty < y \leq 7$ [- ∞ , 7]

If g(x) is the inverse of f(x) what is its domain & range?


$$g(x)$$
 D: $(-\infty, 7]$
 $Q: [3, \infty)$

Find the inverse for

$$\{(-9, 6), (-3, 2), (0, -3), (5, 7)\}$$

The graph of an inverse is the original function reflected over y = x. To have inverse, must pass the horizontal line

Reminder: To be a function it must pass the vertical line test...the inverse must pass the horizontal line test.