\qquad
Fill in the blank. Use the word bank, answers may be used more than once.
WORD BANK- increasing, decreasing, positive, negative, zero, concave up, concave down, concavity, critical point, inflection point, max, min, undefined, horizontal line.

1. If $f^{\prime}(x)=0$ for all values of x , then $\mathrm{f}(\mathrm{x})$ is a \qquad .
2. $f^{\prime \prime}(x)$ is positive if $f(x)$ is \qquad .
3. If $f^{\prime}(x)$ is increasing, then $f^{\prime \prime}(x)$ is \qquad .
4. If $\mathrm{f}(\mathrm{x})$ is decreasing, then $f^{\prime}(x)$ is \qquad .
5. If $f(x)$ has an inflection point, then $f(x)$ has a change in \qquad .
6. If $\mathrm{f}(\mathrm{x})$ is concave up, then $f^{\prime}(x)$ is \qquad .
7. $f^{\prime \prime}(x)$ is positive if $f^{\prime}(x)$ is \qquad .
8. If $f^{\prime}(a)=0$, then $f(x)$ has a \qquad $a t$ \qquad .

True or False.

9. If $f^{\prime \prime}(x)$ is negative then $f(x)$ is concave up.
10. If $f^{\prime \prime}(x)$ is equal to zero, and $f^{\prime}(x)$ is negative, then $f(x)$ is decreasing. \qquad
11. If $f(x)$ is concave down, then $f^{\prime}(x)$ is decreasing. \qquad
12. If $f^{\prime}(x)$ changes from positive to negative, then $f(x)$ has a relative min. \qquad

Sketch the derivative of each function.
13.

14.

15.

16.

17-18. Sketch the graph of the function given the following:

$\# 17$.	$\mathrm{F}(\mathrm{x})$	$\mathrm{F}^{\prime}(\mathrm{x})$	$\mathrm{F}^{\prime \prime}(\mathrm{x})$
$-\infty<x<1$		Negative	Positive
$x=1$	-27	0	Positive
$1<x<2$		Positive	Positive
$x=2$	-16	Positive	0
$2<x<4$		Positive	Negative
$x=4$	0	0	0
$4<x<\infty$		Positive	Positive

$\# 18$.	$\mathrm{F}(\mathrm{x})$	$\mathrm{F}^{\prime}(\mathrm{x})$	$\mathrm{F}^{\prime \prime}(\mathrm{x})$
$-\infty<x<-2$		Negative	Negative
$x=-2$	Undefined	Undefined	Undefined
$-2<x<0$		Negative	Positive
$x=0$	4.5	0	Positive
$0<x<2$		Positive	Positive
$x=2$	Undefined	Undefined	Undefined
$2<x<\infty$		Positive	Negative

Bonus:+5 Draw the original function given the first derivative function. ALL OR NOTHING!!!

