Example 4
$$f(x) = -\frac{1}{2}(x+8)^2 + 14$$

 $= -\frac{1}{2}(x+8)(x+8) + 14$
 $= -\frac{1}{2}[x(x+8) + 8(x+8)] + 14$
 $= -\frac{1}{2}[x^2 + 8x + 8x + 64] + 14$
 $= -\frac{1}{2}[x^2 + 16x + 64] + 14$
 $= -\frac{1}{2}x^2 - 8x - 32 + 14$
 $f(x) = -\frac{1}{2}x^2 - 8x - 18$
Vertex: $(-8, 14)$ Y-Int: $(0, -18)$

Converting Quadratic Equations between Standard and Vertex Forms

What am I learning today?

How to convert a quadratic between different equation types

How will I show that I learned it?

Convert a quadratic equation from vertex form to standard form and from standard form to vertex form

Forms of quadratics:

Standard:
$$y = ax^2 + bx + c$$
 $y = 5x^2 + 3x - 2$

Vertex:
$$y = a(x - h)^2 + k$$

Standard:
$$y = ax^2 + bx + c$$
 $y = 5x^2 + 3x^2$
Vertex: $y = a(x - h)^2 + k$ $y = -2x^2 + 3x^2$
 $y = a(x - h)^2 + k$ $y = -2x^2 + 3x^2$
 $y = 4(x + 2)^2 + 3$
 $y = 6x^2 + 3$

Converting Quadratics from Standard to Vertex Form

Let's Review – How did we label a, b, and c in quadratic trinomials?

Ex. 1
$$x^2 + 9x - 3$$
 Ex. 2 $2x^2 - 5x - 3$ Ex. 3 $-\frac{1}{3}x^2 - 4$ Ex. 4 $3x^2 + x$

Ex. 3
$$-\frac{1}{3}x^2 - 4$$

Ex. 4
$$3x^2 + 3$$

		а	b	С
	$x^2 + 9x - 3$	1	9	-3
	$2x^2 - 5x - 3$	2	ا گ	-3
VF!	$-(1/3)x^2 - 4$		0	+
	$3x^2 + x$	3	1	0

To convert from STANDARD FORM to VERTEX FORM: $y = ax^2 + bx + c \rightarrow y = a(x - h)^2 + k$

- 1. Label a, b, and c.
- 2. Find the X-VALUE OF THE VERTEX, "h", by plugging "a" and "b" into the formula $h = -\frac{1}{2}$
- 3. Plug your "h" back in for the X-VALUES in your equation. Solve for Y. This is "k", the Y-VALUE OF THE VERTEX.
- 4. Label a, h, and k.
- 5. Plug into the vertex form $y = a(x h)^2 + k$.

$$y = \frac{1}{2} \left(x - \frac{1}{k} \right)^{2} = \frac{1}{2} \left(x - \frac{1}{k} \right$$

Example 1
$$f(x) = x^2 + 6x + 8$$
 $h = \frac{1}{2}$ $h = \frac{1}{2$

Example 2
$$f_1^{(x)} = 2x^2 - 4x + 5$$
 $a = 2$ $b = -4$ $c = 5$

$$k = 2(1)^2 - 4(1) + 5 = 3$$

$$f(x) = 2(x - 1)^2 + 3$$

$$Vertex: (1,3) \qquad Y-Int: (0,5)$$

$$f(0) = 2(0-1)^2 + 3 = 5$$

Example 3
$$f(x) = -x^2 + 6x + 9$$
 $a = -1$ $b = 6$ $c = 9$ $c = -(3)^2 + 6(3) + 9 = 18$ $f(x) = -1(x - 3)^2 + 18$ Vertex: $f(x) = -1(x - 3)^2 + 18$ $f(x) = -1(x - 3)^2 + 18$

Example 4
$$f(x) = -\frac{1}{2}x^2 - 10x$$
 $a = -\frac{1}{2}$ $b = -10$ $c = 0$ $k = -\frac{1}{2}(-\frac{1}{2})^2 - 10(-10)^2 - 50$ $f(x) = -\frac{1}{2}(x+|0|^2 + 50)$ Vertex: $(-10,50)$ Y-Int: $(0,0)$