Warm-Up:

Solve for $f^{\prime}(x)$.

1. $f(x)=x^{4}+\sin x$
2. $f(x)=\cos x-\frac{2}{\sqrt{x}}$

Particle Motion

Position $(\dagger)=$ original function
Velocity $(t)=1$ st derivative

Acceleration $(\dagger)=2 n d$ derivative

Lucky drops an acorn off the top of a 100 foot tree. What is the position of the acorn at time $1 \mathrm{sec}, 2 \mathrm{sec}, 3 \mathrm{sec}$ with respect to the ground?

$$
\begin{aligned}
& s(t)=-16 t^{2}+100 \\
& s(1)=-16(1)^{2}+100=84 f f t \\
& s(2)=-16(2)^{2}+100=36 f t \\
& s(3)=-16(3)^{2}+100-44 f t \\
& \text { at } 3 \text { seconds acom is on the } \\
& \text { ground }
\end{aligned}
$$

What is the instantaneous velocity at $t=1$ and $t=2$ seconds for the acorn in the previous problem?

$$
\begin{aligned}
& \text { the previous problem? } \\
& s(t)=-16 t^{2}+100 \\
& v(t)=s^{\prime}(t)=-32 t=v(t) \\
& v(1)=-32(1)=-32 \mathrm{ft} / \mathrm{sec} \\
& v(2)=-32(1)=-64 \mathrm{ft} 1 \mathrm{sec}
\end{aligned}
$$

What is the instantaneous acceleration of the acorn at $t=1$ sec . and $t=2 \mathrm{sec}$?

$$
\begin{aligned}
& \text { sec. and } t=\text { = sec.? } \\
& a(t)=-32 \mathrm{ft} / \mathrm{st} \\
& a(1)=-32 \mathrm{ft} / \mathrm{sec}^{2} \\
& a(2)=-32 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

At what time does Lucky's acorn hit
the ground?

$$
\begin{aligned}
& s(t)=0 \\
& \text { position }=\text { zero }
\end{aligned}
$$

$$
s(t)=-16 t^{2}+100=0
$$

$$
\begin{array}{rr}
-100 & -100 \\
--1000
\end{array}
$$

$(4 t \times 10)(4 t-10)$

$$
\begin{aligned}
& 4 t-10=0 \\
& \frac{4 t}{4}=\frac{10}{4} \\
& t=2.5
\end{aligned}
$$

$$
\begin{aligned}
\frac{-16 t^{2}}{-\sqrt{16}} & =\frac{-100}{-16} \\
)=0 & t^{2}
\end{aligned}
$$

$$
\frac{4 t}{4}=\frac{10}{4} \quad t=\sqrt{\frac{25}{4}}
$$

General equation for
Position/Acceleration/Velocity

$$
s(t)=a t^{2}+v_{0}++s_{0}<16 t^{2}+100
$$

$\mathrm{a}=$ given
$v_{0}=$ initial velocity
$s_{0}=$ initial height

For a free falling object....
$a=-16$ hen the height is in feet
$a=-4.9$ when the height is in meters

A coin is $d r o p p e d$ from the top of each of the buildings listed below. Find
a. the position function
b. the velocity function
c. the acceleration function $s(t)=$

$$
\begin{aligned}
& \text { Sears Tower } 1700 \mathrm{ft} . \quad v(t)=-32 t \\
& \begin{array}{l}
\text { Empire State } \\
\text { Building }
\end{array} 1454 \mathrm{ft} \quad a(t)=-32
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=-9.8 t \\
& a(t)=-9.8
\end{aligned}
$$

For his next trick, Lucky is being launched out of a cannon that rests ontop of a diving board 150 feet in the air! If he follows $\longrightarrow s(t)=-75 t^{2}+75 t+150$ position at what time will Lucky hit the safety net below? position $=$ zero

$$
\begin{aligned}
0= & -75\left(t^{2}-t-2\right) \\
0= & -75(t-2)(t-1)=0 \\
& t-2=0 \quad t=2 \mathrm{sec} \quad \text { negative }
\end{aligned}
$$

What is Lucky's velocity when he hits the net?

$$
\begin{aligned}
v(t)= & -150 t+75 \\
v(2)= & -150(2)+75= \\
& -225 \mathrm{ft} \mid \mathrm{sec}
\end{aligned}
$$

A rock is dropped into the Chatahoochee river from atop a bridge that is 54 meters above the surface of the water. What is the instantaneous velocities at $t=1$ and $t=2$ seconds? How long does it take the rock to hit the water? Find the velocity of the rock just before it hits the water.

